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A conformal-mapping-based coordinate generation method for channel-type contigurations 
has been developed. A channel of an arbitrary shape in the physical plane is mapped into a 
straight channel in the computational plane. The parameters of the transformation have to be 
determined through a method of successive approximations. A simple iteration scheme, that 
converges quite rapidly even with a poor initial guess, is presented. Solutions for different con- 
figurations are displayed to illustrate the capabilities of the method. Results of the tests show 
higher-order accuracy of the method in the case of curved channels. IT 1985 Academic Press, Inc. 

1. INTRODUCTION 

The common goal of different grid generation procedures is to construct boun- 
dary-fitted coordinates. Such coordinates permit writing of general codes that may 
treat field equations in domains of arbitrary shapes. Grid generation for arbitrary 
domains has to be done numerically, since analytical solutions exist for only a 
limited class of geometrical configurations. The wide variety of available methods 
has been reviewed in the recent papers by Thompson [ 1 l] and Thompson and 
Warsi [ 121. The generated coordinates are, in general, curvilinear. The form of the 
field equations is considerably simplified if the coordinates satisfy the condition of 
orthogonality. When the coordinates are also conformal, additional simplifications 
result from the application of the Cauchy-Riemann relations. The major advantage 
in selecting conformal coordinates is in the fact that their properties are described 
in terms of only one metric coefficient. 

Methods based on conformal mapping have long been utilized to generate coor- 
dinate system about curves that are the contours of the mapping. Ives [4] discussed 
the foundations and implementation of conformal mapping to the grid generation, 
while Thompson and Warsi [ 123 provided an extensive review of the existing 
solutions. Kober [6] gave a list of elementary functions that may be utilized for the 
mapping purposes. Davis [3] utilized the Schwarz-Christoffel transformation and 
made a very powerful grid generation tool out of it by extending the transformation 
to the case of curved contours. Ives [4] discussed extensions of the conformal map- 
ping to a certain class of three-dimensional configurations. The available methods 
are quite powerful, however, a good understanding of the theory of functions of 
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complex variable may be necessary for their effective application. The most 
pronounced difficulties are due to the multivaluedness of the transformations and 
special care is required for the numerical selection of the appropriate Riemann 
sheet. 

Coordinate generation methods for internal flows have been discussed by Knight 
[5]. O’Brien [7] presented several functions that generate symmetric ductlike con- 
figurations. Sridhar and Davis [lo] developed a mapping that permitted coor- 
dinate fitting for a more general class of duct shapes. This technique has been suc- 
cessfully utilized by Anderson et al. [ 1] for the solution of viscous flow problems. 
There are several other solutions available for channel configurations [ 11, 121, 
however, no mapping with provision for fitting an arbitrary duct has yet been 
developed. 

This paper describes a conformal-transformation-based method of coordinate 
generation for channels of arbitrary shape. The basic idea of the solution is to map 
the channel of a given shape in the physical plane into a straight channel in the 
computational plane. Thus, the solution of the flow problem may be carried in the 
computational plane with the help of a simple rectangular grid. Transformations 
being presented are of the SchwarzPChristoffel type and have a semi-analytic form; 
that is, the form of the transforming function is known, however, its parameters are 
not. Transformation dealing with a channel bounded by straight wall elements is 
described in Section 2. The transformation involves parameters defined in the com- 
putational plane, and thus not known a priori for the configuration of interest in 
the physical plane. Section 2.1 gives a description of the numerical procedure per- 
mitting determination of the required parameters. This procedure, which involves 
integration of the mapping function, is dr~‘.~~ accurate, where An’ is the integration 
step, has a simple logic and is easy to program. The difftculties associated with the 
singularities of the mapping are removed by applying integration procedures 
described in Section 2.1.2. Section 3 describes the extension of the mapping to the 
general case, i.e., the case of a channel bounded by straight and curved wall 
elements. Again, certain parameters of the transformation are defined in the com- 
putational plane and therefore are not known a priori for the configuration of 
interest. The appropriate numerical procedure is described in Section 3.1 and is 
Aw~.“~ accurate. The mapping described in Sections 2 and 3 can be used to generate 
coordinates that are not necessarily conformal. Section 4 describes metric coef- 
ficients for a conformal system and discusses extension to the axisymmetric and 
three-dimensional cases. Determination of the parameters of the transformation is 
equivalent to the solution of the potential flow problem in the channel. Section 5 
describes such solutions for several different flow conditions. Streamlines of the 
inviscid flow behave as optimal coordinates in boundary-layer analysis [ 131, and 
therefore, the coordinates described in this paper are particularly well suited for the 
incorporation of the scaling typical for the high Reynolds number flows. 
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2. CHANNELS BOUNDED BY STRAIGHT WALL SEGMENTS 

An arbitrary channel, bounded by the straight wall segm&rts in the physical 
plane, is mapped into a straight channel in the computational plane. The transfor- 
mation is illustrated in Fig. 1. The individual mappings have the form 

h 
)(I = - In t; 

IT (1) 

where M is a complex constant, n determines number of corners, and cuc denotes 
corner turning angles. Angles an are taken to be positive for the clockwise rotation 
when the channel is circled in the counterclockwise sense. Elimination of the t-plane 
results in an equation directly relating the physical (z) and the computational (w) 
planes. Three forms of the transformation shown below are equivalent: 

@a) 

m = n2 

1 
Gl XrI cosh;(w-++ih) 0) 

m=l 

In the above R, RI, and R, are complex constants, n’s denote locations of corners 
in the HI-plane, n stands for the total number of corners, n, and n, denote number 
of bottom and top corners respectively, subscript I corresponds to the bottom cor- 
ners and subscript m corresponds to the top corners only, subscript j corresponds 
to both types of corners, i stands for the imaginary unit &l, and the meanings of 
the remaining symbols are explained in Fig. 1. The reader may develop a different 
form of the transformation through the appropriate combination of Eqs. (2a)-(2c). 

z _ PLANE (physical) w - PLANE (computational) 

t - PLANE (intermediate) 

tm(t) 

?i 

t 
clll cr cr+ 1 
z, %l*, W) 

FIG. 1. Mapping of an arbitrary channel into a straight channel. 
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Davis [3] proposed mapping in the form given by Eq. (2b) and the necessary 
details for this form of the transformation were worked out by Sridhar and Davis 
[lo]. The form given by Eq. (2a) offers the advantage of the brevity of notation 
and is used throughout this paper. 

The transformation is completed provided locations of the points n in the com- 
putational plane, and corresponding to the corners in the physical plane, are known 
and the complex constant R is determined. This is achieved by applying the 
numerical procedure described in the next section. 

2.1. Determination of the Parameters of the Transformation 

The difficulties in applying transformation (2) are due to the fact that the relation 
between a particular channel shape, and the numerical values of the parameters of 
the appropriate transformation, is not explicit. Therefore, the required parameters 
have to be determined through a method of successive approximations. 

Transformations being considered in this paper are of the Schwarz-Christoffel 
type [3]. The relation between the z and w planes is given as 

where g(Mv) stands for the right-hand side of Eq. (2). The initial point \i’O in the 
w-plane can be chosen arbitrarily within the domain 0 < Im( )tvO) < h, 
- cc < Re(Mf,,) < +co, and it is taken to be zero throughout this paper. Once the 
initial point u’~ has been chosen, the constant N controls the location of the channel 
in the z plane. The constant N is taken to be zero throughout this paper and thus 
the origins of the z and w planes coincide. If the n turning angles LY, rc, CQX,..., a,,rc 
are given, the shape of the channel in the z plane is determined uniquely by the 
choice of n points ai, al,..., a, in Eq. (2) and is independent of the particular 
values of the constants WI,, and N in Eq. (3) and R in Eq. (2). The constant R con- 
trols the scale of the channel through the value of 1 RI and its orientation through 
the value of arg(R). According to the Riemann’s mapping theorem [2], just three 
of the points aj may be chosen arbitrarily. The reader should note that the total 
number of corners in Eq. (2) is n + 2, where n corners appear explicitly and two 
degenerate corners enter the equation only implicitly. One of the degenerate corners 
corresponds to the left end of the channel in the w plane, the origin of the t plane 
and the left end of the channel in the z plane (Fig. 1). The second degenerate corner 
corresponds to the right end of the channel in the w plane, 1 tl + cc in the upper t 
plane and the right end of the channel in the z plane. Therefore, two points belong- 
ing to the boundary of the transformed domain are fixed due to the nature of the 
transformation, and one point remains to be chosen arbitrarily. This choice is 
accomplished throughout this paper by placing the first bottom corner at the origin 
of the w plane (c~i = 0). All the remaining parameters are uniquely defined and have 
to be determined from Eq. (2) as a part of the solution. Sridhar and Davis [lo] 
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argued that the locations of any two corners may be chosen arbitrarily, and, 
therefore, they predetermined locations of the top and bottom corners farthest to 
the left in Fig. 1. They also argued that these two corners were to be located one 
above the other in the w plane. This assumption is correct for configurations with 
symmetry of the type discussed in Ref. [lo]. In problems with no symmetry, 
Sridhar and Davis [lo] considered only channels with a straight section far 
upstream. The assumption regarding location of the corners is approximately 
correct, if these two corners are located sufficiently far upstream from the deformed 
part of the channel. The asymptotic state corresponding to a straight channel 
upstream is reached exponentially with distance and, therefore, the error of 
approximation due to the inappropriate selection of the location of the corners 
decreases exponentially. If the corners are located sufficiently far upstream in the 
straight section, the error becomes negligible. A solution based on the selection of 
parameters described in Ref. [lo] has been carried out as a test, and it has been 
found that the type of configurations considered in Ref. [lo], together with the 
method of specification of the shapes of the channel, compensated for the 
inappropriate selection of the arbitrary parameters. It has, therefore, been con- 
cluded that the solution presented by Sridhar and Davis [lo] produces correct 
results only for a limited class of shapes. 

The complex constant R and the locations aj of all the corners, with the excep- 
tion of the first bottom corner (a, = 0), have to be determined through a series of 
successive approximations. The iteration procedure represents an extension of the 
ideas introduced by Davis [3] and is developed separately for the symmetric and 
nonsymmetric channels, to take advantage of the considerable simplifications 
available in the symmetric case. 

2.1.1. Symmetric Channels 

The iteration procedure is simplified by considering only half of the channel 
(Fig. 2) and making use of the condition of symmetry. Constant R in Eq. (2) can be 

WW t w - PLANE 

FIG. 2. Mapping of a symmetric channel. 
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written as R = IR( exp( -i@), where &r is an angle shown in Fig. 2 and 1 RI is not 
known. An initial guess is made for 1 RI and for locations of corners aj. The a;s are 
picked along the real axis such that Re(a,- ,) < Re(a,) < Re(ai+ ,), where Re denotes 
a real part. The new value of IRI is adopted by imposing condition, 

*co. 11) 
Im g( iv) dw = H, 

IO, 0) 1 (4) 

where Im denotes an imaginary part, g(w) stands for the right-hand side of Eq. (2), 
and the remaining symbols are illustrated in Fig. 2. Integration is carried sub- 
sequently with the new value of /RI along the bottom of the channel to determine 
locations of corners in the physical plane. The computed locations do not, in 
general, coincide with the specified locations. The broken line in Fig. 2 illustrates a 
typical shape of the channel, corresponding to the assumed locations of corners in 
the computational plane. The corner turning angles of the computed channel are 
the same as the turning angles of the specified channel, however, shapes of both 
channels are not identical due to the difference in distances between the corners. 
The shapes of both figures can be matched through the appropriate change in the 
location of corners in the computational plane. The new guess is made for the 
location of corners by assuming that the ~7~‘s should be resealed according to the 
scaling indicated by errors in the distances between the corners in the physical 
plane 

Here subscript c denotes correct values, g stands for the guessed values, and j 
denotes corner number. The above procedure is repeated until convergence is 
achieved. The process converges quite rapidly, even with a poor initial guess. 
Results for one of the cases considered are displayed in Fig. 2. 

2.1.2. Nonsymmetric Channels 

The case of a nonsymmetric channel is sketched in Fig. 3. The complex constant 
R in Eq. (2) has the form R= IRI exp[k( -dB++bT+ is,)], where d8rc, d+, and 
6,~ denote angles shown in Fig. 3 and I RI is not known. The above expression can 
be verified by letting M’ + cc in Eq. (2). An initial guess is made for I RI and for 
locations of corners LZ~. The a,‘~ are numbered in the counterclockwise direction 
starting with a, being located at the origin. The initial guess has to be such that 
Re(aj- ,) < Re(a,) < Re(aj+ L) along the bottom and Re(aj- L) > Re(a,) > Re(a,+ ,) 
along the top, where Re denotes the real part. Bottom corners are located along the 
real axis and top corners along the axis w = ih (Fig. 3). The new corrected locations 
of the bottom corners can be evaluated by applying the method described in the 
previous section. This method requires knowledge of the location of at least one 
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FIG. 3. Mapping of a nonsymmetric channel. 

point in the transformed plane and, therefore, it cannot be applied to the top of the 
channel unless the location of one of the top corners has been predetermined by 
other means. The top-left corners has been selected for this purpose throughout the 
paper and its location, together with the new value of [RI, is determined by impos- 
ing condition 

I n” g(w)dw=z,, (6) (0.0) 

where g(w) stands for the right-hand side of Eq. (2), subscript n corresponds to the 
top-left corner, z, stands for the known location of the top-left corner in the 
physical plane, and a,, denotes the unknown location of the same comer in the 
transformed plane. Equation (6) is satisfied provided that the proper values of a, 
and IRI have been selected. This is not true in general and, therefore, 

Wda,), 14 I= z, - z, Z 0, (7) 

where D denotes the difference between the value z, of the integral on the left-hand 
side of Eq. (6) and the known value z, of the right-hand side of Eq. (6). The dif- 
ference D is a function of IRI and Re(a,) only, since it is assumed that the distances 
between top corners are known. The values of IR( and Re(a,) are guessed and the 
Newton-Raphson procedure is used to correct them until condition D =0 is met 
with the desired accuracy. This occurs quite rapidly, usually within a couple of 
iterations. It should be noted that the locations of all top comers vary during the 
iteration process to keep the distances between the corners unaffected. The location 
of the bottom-left comer is known and it is assumed that the determined location of 

581!58.‘2-6 



236 J. M. FLORYAN 

the top-left corner is exact. Now the new als corresponding to the remaining top 
and bottom corners are determined by applying the method described in the 
previous section to the top and bottom of the channel. The above procedure is 
repeated until convergence is achieved. The process converges quite rapidly, even 
with a poor initial guess. The results are illustrated in Fig. 3. 

The iteration procedures described above and in Section 2.1.1 assume that 
integration of Eq. (2) does not pose any problems. In fact. the required integration 
can rarely be done analytically and, therefore, a numerical integration has to be 
introduced to permit applications of transformation (2) to arbitrary shapes. 

2.1.3. Numerical Integration 

The numerical integration of Eq. (2) is complicated due to singularities present 
when aj<O. An attempt to integrate this equation across the singularity, by using, 
say, a midpoint rule, will result in errors due to the nonanalytic nature of the 
integrand there. The diffkulties are avoided by properly adopting integration 
method described in Ref. [3]. 

A modified midpoint rule which integrates exactly any nonanalytic term occurr- 
ing at a corner, is described by examining two adjacent corners, say, k and k + 1. 
Equation (2) may be viewed as being made up of three factors on the right-hand 
side, 

where 

W=[+u,)r: [ ] F,(w) = sinh & (ur - ak) =‘/G,(w), 

1 
mk+l 

; sinhG(~--a~+~ )]ak+‘/Ww), 

and f(w) is a well-behaved function near corners k and k + 1 resulting from all the 
remaining corners in the problem. The reader should note that functions F, and Fz 
are nonsingular and that functions G1 and Gz may be singular depending on the 
sign of CC The integration near k can be carried as 

--- 
z m-tr~,=F~GtFd 2 

[( > 

at (W-a.)ak+l wm+l 

ak+l 1 wm ’ 

and near k + 1, 

(9) 

--- 
z,+,-z,=GIFI~‘~~ 

ak+l (W-ak+,)ak+l+l 

ak+,+l 1 
W,,+l 3 (10) wn 
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where F,, Fz;, G,, G,,f are values of F,, F2, G,, Gz, and f evaluated at 
fbLl+wn+l ). Subscript m denotes the integration step. Far away from corners k 
and k + 1 both expressions reduce to the midpoint rule, 

- - - - 
Zm+I -z, =G,F,G2FzfAw (11) 

The multiplicative composite formula of the type given in Refs. [3, 13) and valid 
throughout the whole integration domain, is developed by multiplying the right- 
hand sides of Eqs. (9) and (10) and dividing by Eq. (11). The general formula, that 
includes all corners, has the form 

(12) 

Equation (12) correctly accounts for singularities and is of the second-order 
accuracy type. The testing of the effective accuracy has been done for the sudden 
expansion of a channel, as shown in Fig. 4. Equation (2) in this particular case has 
the form 

~=(!!?$)“‘[sinh~r~]“*[sinh~(n7-~ln(~))]P”2. (13) 

E 

10-Z 

10-Z 

10-a 

l”-;oL--+-$- AW 
FIG. 4. Accuracy testing of the mapping of a channel bounded by straight-wall elements (do - in- 

tegration step, E = I& - k(, where h stands for the exact value of the metric coeffkient and /;, denotes the 
computed value). See text for details. 

5X1.511 2.6* 
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Analytical integration of the above relation gives 

-i(H -H ) 
’ ” (14) 

where 

g = exp( WC//Z) - (Hz/H,)’ 
exp( rprr/h) - 1 ’ 

In the above, h stands for the height of the transformed channel, i is the imaginary 
unit, and the remaining symbols are explained in Fig. 4. The metric coefficient (Sec- 
tion 4) has been evaluated at w = (0.1,O.l) by applying the method described in this 
paper and compared with the exact value given by Eq. (13). The results obtained 
with the different integration step-sizes are displayed in Fig. 4 and show that the 
effective accuracy of the method is Aw’~‘~. 

3. CHANNEL BOUNDED BY CURVED WALL SEGMENTS 

Transformation (2) can be augmented to include channels bounded by curved- 
wall elements. The augmentation process represents an extension of ideas described 
in Refs. [3, 141 and is illustrated with the help of the configuration shown in Fig. 5. 
The curved element is considered as being made up of a large number of straight 
line segments and the transformation (2a) in the form appropriate for this case can 
be rewritten as 

11 . (15) 

In the limit n + co, the straight segment shrinks to zero, the turning angles ajjn are 
replaced by -rdfij, the locations aj are replaced by 8,, and the summation in 

i3 
* mu 

--- 
zm--. 

lm(=‘aR 

cYy” - - 
le,,T 

-- 
*I, -- 

--_ 

FIG. 5. Mapping of a channel bounded by curved-wall elements 
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Eq. (15) is replaced with an integral. Thus, the mapping for a continuous curved 
element becomes 

z=Rexp sinh-&(n:-d) 

In the above, Im denotes the location of the points belonging to the curved elements 
in the computational plane and rrj? stands for the tangent to the curved element in 
the physical plane. The minus sign has been added to account for the fact that the 
turning angles are considered to be positive in the clockwise direction (Section 2) 
while tangents are positive in the counterclockwise direction. Equation (16) 
includes Eq. (2), with the exception of the entrance and exit angles. When a corner 
is encountered, say at a j location, /3 becomes a step function and the portion of the 
integral at the corner becomes 

sinhG(bv-A) 1 JL 
dp= -cc.ln sinh$(w-aj) 

where 01, is the step in fl at the location b = a,, i.e., aj = bjP - flj+. If the channel is 
bounded only by straight wall segments, then d/? = 0 except at the corners where d/? 
is a step function and the mapping (16) reduces to the form (2a). Equation (16) is, 
therefore, capable of mapping channels with shapes of a very general nature such as 
shown, for example, in Fig. 6. The general form of the mapping may be written as 

$=Rexp E(c$-6) exp ‘f’ -1n sinha(w-aj) 
[2h 1 -is=, a’ [ 11 

x exp{- ~~:f~~“ln[sinh~(w-d)]daj, (18) 

where n corners have been extracted and k represents the number of curved 
segments. The mapping is complete when the locations of corners aj and curved 
segments d in the computational plane, corresponding to a given configuration in 
the physical plane, are established and the complex constant R is known. This may 
be achieved by applying the numerical procedure described in the next section. 

3.1. Determination of the Parameters of the Transformation 

The angle /J appearing in Eq. (18) depends on the geometry of a particular cur- 
ved-wall segment and is a function of the location along the surface of this segment. 

FIG. 6. Mapping of an arbitrary channel. 
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The curved segments in the transformation (18) may be handled by subdividing 
them into elements and approximating the b variation on an element with an 
appropriate analytic function of z. Here it is assumed that the wall shape is analytic 
on the elements, and therefore care should be taken in making sure that all discon- 
tinuities, i.e., corners, curvature discontinuities, etc., appear at the element 
endpoints. 

The shape of a wall element between m and m + 1 is considered to be analytic 
and j3 is approximated as 

P=c,m+c2?H sinh -&(d - 8,) + cjm cash ;(I: - G,), (19) 

where &, = t(&, + &, + ,) denotes location of the middle point of the element in the 
computational plane and c,,,,, cZm, and c3m are constants. The integral in Eq. (18) 
assumes the form 

sinha(w-d) dfi 1 

(20) 

The integration in Eq. (20) can be done exactly and the results are expressed as 

)I d~=c2,,,lng2,+c,,Ing,,, (21) 

where 

sinhG(uv-&,+,) 1 
sinh C(n/4hNd,+t - Dm)l 

1 
sinh [(rr,i4h)(6,+1 - &,,,I] 

(22) 
sinh [ln:Zh)(w- 1’.1] 

x exp -2sinhG(d,+,-8,) 1 
sinhk (w-&d,+I) 

g3m = 
sinh d (W - 4,) 

J 

:osh Ctn/4h)(6,+,- bm)] cash [tn,i2hj(,r ~ L,)] 

X 

(23) 
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The error introduced by approximation (19) is reduced with reduction of the length 
of the element. Here, the proper accuracy will be maintained by keeping the length 
of an element of the same order-of-magnitude as the length of the integration step 
used for the numerical integration of Eq. (18). One could obviously add higher 
powers of sinh and cash in Eq. (19) to improve the accuracy, however, the assumed 
form, i.e., Eq. (19), is already sufficient to match the assumed surface slope dis- 
tribution with the correct slopes at m and m + 1 locations. The numerical 
integration of Eq. (18) allows one to match the prescribed surface points at the m 
and m + 1 locations. Since the element endpoints and slopes are matched with the 
actual surface, the above formulation has features of a fourth-order method [S]. 
However, since the integration formula, which will be used in conjunction with 
Eq. (18) is only Aw’.~~ accurate, the final accuracy is expected to deteriorate. 

The general mapping (18), along with the assumed /I variation on an element in 
the form (19), can be rewritten as 

where gzn, and g3, are given by (22) and (23) and n denotes the number of 
elements. A corner has been added at the beginning of each element to simplify the 
notation. The case of a, = 0 corresponds to an element without a comer. Equation 
(24) can be integrated in the manner described in Section 2.1.3. Each element 
corresponds to one integration step. Equation (12) is used to handle singularities 
associated with corners and the contributions due to g2;nch and g;;3m are obtained 
by evaluating these terms at the integration step midpoint. Since these terms are 
nonsingular, the resulting integration has second-order features. The testing of the 
effective accuracy of the method will be discussed at the end of this section. 

The constants in Eq. (19) are to be evaluated from the matching of the assumed 
surface slope distribution with the surface slope at the element endpoints. This leads 
to 

Pm = Clm + C2m sinh G (d, - 4,) + c3, cash 6 (e,,, -d,), 

B m+l = elm + c2m sinh d (~5, + , -6,)fc,,cosha(d,+,-e,), (26) 

where /?,,, and /?,,,+ , are known. The third equation is obtained by properly inter- 
preting the numerical integration formula. Since the midpoint rule is employed, the 
curved element is replaced during the integration process by a straight element, 
whose slope 8, is given by 

8, = Clm + Czm. (27) 

This equation comes from (19) and can be verified by evaluating the change of the 
argument on an element in Eq. (24). The midpoint rule is equivalent to the 
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trapezoidal rule for well-behaved functions [15], and the slope 8, is the same as 
the tangent to the straight line connecting points m and m + 1. The angle 8, is, 
therefore, considered to be a known quantity and is used in evaluation of the con- 
stants c,,,,, cl,,,, and c~,,,. Elimination of the unknowns from Eqs. (25)-(27) results 
in 

c 2m=uL+* -P,)/2sinhz(&,+, 
4h -&IL (29) 

l-cosh;(&,+,-d,) 
> 

The last equation is rewritten as 

l-cosh;(&+,-R,) 1 
to demonstrate that the slope of the straight line connecting points m and m + 1 is 
not equal to the average angle on the element, as it might be expected from a 
numerical integration. The quantity c~, may be viewed as an angle correction factor 
ensuring that after the mapping the angular rotation will be exactly as specified by 
Eq. (11). The reader should note that the transformation (24) requires only the 
knowledge of c2m and c3, and the evaluation of elm is not required. 

The location of the element endpoints 8, in the computational plane, 
corresponding to their known locations Z, in the physical plane, have to be 
established through a method of successive approximations. The procedure is 
exactly the same as described in Section 2.1. The 6,‘s are guessed initially and are 
iteratively corrected by Eq. (5) where the aCj and agl are replaced with d, and egi. 
Similarly, IRI is established through the iterations, while arg(R) assumes the values 
given in Sections 2.1.1 and 2.1.2. The process converges as rapidly as in the case of a 
channel bounded by the straight wall segments. The testing of the accuracy has 
been done for the channel shown in Fig. 7. The exact transformation has the form 

M,=Az+Btanh;z, (32) 

where the values A = 0.5 and B=0.2 have been selected. The upper wall of the 
channel is described by the line corresponding to Im(w) = 0.485. The same channel 
has been mapped using the method described earlier in this section, the metric coef- 
ficient (Section 4) has been evaluated at up= (0.1,0.4365) and compared with its 
exact value. The results are displayed in Fig. 7 and show that the effective accuracy 
of the method is Aw3.49. 
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FIG. 7. Accuracy testing of the mapping of a channel bounded by curved-wall elements (LIw,-in- 
tegration step, E = I/;, - /;I, where /; stands for the exact value of the metric coeffkient and KC denotes the 
computed value). See text for details. 

4. METRIC COEFFICIENTS 

Transformations described in this paper may be used to generate several different 
coordinate systems, which may be conformal or nonconformal, orthogonal or non- 
orthogonal. This section provides only a description of the simplest systems. The 
reader may consult Refs. [4, 10, 11, 121 to get an overview of the potentials of the 
method based on conformal transformations. 

The simplest coordinate system is defined by lines 5 = const. and q = const. in the 
computational plane (w = 5: + iv). The metric coefficients which define the ratio of 
the differential distances in the z = x + iy plane to the differentials of the coordinate 
parameters in the w = C; + iv plane, have the form 

It can be shown that in the case of a conformal mapping 

(33) 

and the coordinate system is characterized by only one metric coefficient, which can 
be easily determined from Eq. (2) or (18). 
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Coordinates suitable for axisymmetric channel can be constructed through the 
rotation of a two-dimensional system around the appropriate axis (rotation around 
the top of the configuration displayed in Fig. 2). The metric coefficient 
corresponding to the angular rotation, is equal to the distance from the axis of 
rotation and may be obtained through the integration of Eq. (2) or (18). 

A certain class of three-dimensional coordinate systems may be obtained through 
an appropriate translation of the two-dimensional systems, such as described in this 
paper, in the third direction. A trivial example is provided by considering the third 
dimension to be Cartesian. Another class of the three-dimensional contigurations 
may be considered by noting that the conformal mapping provides a surface-to-sur- 
face correspondence that is not limited only to the planar surfaces [4,9]. 

5. POTENTIAL FLOW 

The determination of the parameters of transformations (2) and (18) is 
equivalent to the solution of the Laplace equation and may be conveniently inter- 
preted as a solution of the potential flow problem in a channel. The complex poten- 
tial, R = @ + iY, in the transformed plane has the form 

Q = AM,. 

The complex velocity at a point in the physical plane is given by 

(35) 

(36) 

The constant A may be determined from the known flow condition. In the case of a 
straight channel upstream, u + U, as )I’ -+ -co, and A = U, H,fh, where H, is the 
distance between the walls far upstream in the physical plane. When the channel is 
straight downstream, u -+ Uz as ~1’ -+ + co and A = Uz Hz/h, where H, is the spacing 
between the walls far downstream. Straight channel upstream and downstream 
corresponds to A = RU,(H,/H,)‘!‘= RU,(HJH,)“‘. When the flow rate Q is given, 
A = Q/h. 

Pressure field can be easily specified in terms of the pressure coefficient 

c ,P-po,l- A2 
P 

+dJ; Up’ 
(37) 

where p. and U, are pressure and velocity at a reference point and k is given by 
Eq. (34). 
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6. CONCLUDING REMARKS 

A coordinate generation method for channel flows has been developed. The 
method involves conformal mapping of the channel of an arbitrary shape in the 
physical plane into a straight channel in the computational plane. The mapping, 
which is given explicitly, involves parameters defined in the computational plane 
and thus not known a priori for the specified configuration in the physical plane. A 
method of successive approximations, leading to the determination of the required 
parameters, is presented. The method is LIu”.~~ accurate in the case of channels 
bounded by straight-wall elements and Aw3.49 accurate in the case of channels 
bounded by curved-wall elements; it has a very simple logic, is easy to program, 
and converges quite rapidly. Several configurations of a rather extreme geometry 
and involving up to three hundred points have been solved without encountering 
difficulties. As a byproduct the method produces a solution of the potential flow 
problem for the given configuration. 
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